3.1063 \(\int \frac{x^{7/2}}{a+b x^2+c x^4} \, dx\)

Optimal. Leaf size=385 \[ \frac{\left (\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}+b\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{\sqrt [4]{2} c^{5/4} \left (-\sqrt{b^2-4 a c}-b\right )^{3/4}}+\frac{\left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{\sqrt [4]{2} c^{5/4} \left (\sqrt{b^2-4 a c}-b\right )^{3/4}}+\frac{\left (\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}+b\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{\sqrt [4]{2} c^{5/4} \left (-\sqrt{b^2-4 a c}-b\right )^{3/4}}+\frac{\left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{\sqrt [4]{2} c^{5/4} \left (\sqrt{b^2-4 a c}-b\right )^{3/4}}+\frac{2 \sqrt{x}}{c} \]

[Out]

(2*Sqrt[x])/c + ((b + (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b - Sqrt[b^2 - 4*a*c
])^(1/4)])/(2^(1/4)*c^(5/4)*(-b - Sqrt[b^2 - 4*a*c])^(3/4)) + ((b - (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(2
^(1/4)*c^(1/4)*Sqrt[x])/(-b + Sqrt[b^2 - 4*a*c])^(1/4)])/(2^(1/4)*c^(5/4)*(-b + Sqrt[b^2 - 4*a*c])^(3/4)) + ((
b + (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTanh[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2^(1/
4)*c^(5/4)*(-b - Sqrt[b^2 - 4*a*c])^(3/4)) + ((b - (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTanh[(2^(1/4)*c^(1/4)*S
qrt[x])/(-b + Sqrt[b^2 - 4*a*c])^(1/4)])/(2^(1/4)*c^(5/4)*(-b + Sqrt[b^2 - 4*a*c])^(3/4))

________________________________________________________________________________________

Rubi [A]  time = 0.797352, antiderivative size = 385, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 6, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.3, Rules used = {1115, 1367, 1422, 212, 208, 205} \[ \frac{\left (\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}+b\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{\sqrt [4]{2} c^{5/4} \left (-\sqrt{b^2-4 a c}-b\right )^{3/4}}+\frac{\left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{\sqrt [4]{2} c^{5/4} \left (\sqrt{b^2-4 a c}-b\right )^{3/4}}+\frac{\left (\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}+b\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{\sqrt [4]{2} c^{5/4} \left (-\sqrt{b^2-4 a c}-b\right )^{3/4}}+\frac{\left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{\sqrt [4]{2} c^{5/4} \left (\sqrt{b^2-4 a c}-b\right )^{3/4}}+\frac{2 \sqrt{x}}{c} \]

Antiderivative was successfully verified.

[In]

Int[x^(7/2)/(a + b*x^2 + c*x^4),x]

[Out]

(2*Sqrt[x])/c + ((b + (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b - Sqrt[b^2 - 4*a*c
])^(1/4)])/(2^(1/4)*c^(5/4)*(-b - Sqrt[b^2 - 4*a*c])^(3/4)) + ((b - (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(2
^(1/4)*c^(1/4)*Sqrt[x])/(-b + Sqrt[b^2 - 4*a*c])^(1/4)])/(2^(1/4)*c^(5/4)*(-b + Sqrt[b^2 - 4*a*c])^(3/4)) + ((
b + (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTanh[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2^(1/
4)*c^(5/4)*(-b - Sqrt[b^2 - 4*a*c])^(3/4)) + ((b - (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTanh[(2^(1/4)*c^(1/4)*S
qrt[x])/(-b + Sqrt[b^2 - 4*a*c])^(1/4)])/(2^(1/4)*c^(5/4)*(-b + Sqrt[b^2 - 4*a*c])^(3/4))

Rule 1115

Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[
k/d, Subst[Int[x^(k*(m + 1) - 1)*(a + (b*x^(2*k))/d^2 + (c*x^(4*k))/d^4)^p, x], x, (d*x)^(1/k)], x]] /; FreeQ[
{a, b, c, d, p}, x] && NeQ[b^2 - 4*a*c, 0] && FractionQ[m] && IntegerQ[p]

Rule 1367

Int[((d_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(d^(2*n - 1)*(d*x)
^(m - 2*n + 1)*(a + b*x^n + c*x^(2*n))^(p + 1))/(c*(m + 2*n*p + 1)), x] - Dist[d^(2*n)/(c*(m + 2*n*p + 1)), In
t[(d*x)^(m - 2*n)*Simp[a*(m - 2*n + 1) + b*(m + n*(p - 1) + 1)*x^n, x]*(a + b*x^n + c*x^(2*n))^p, x], x] /; Fr
eeQ[{a, b, c, d, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && GtQ[m, 2*n - 1] && NeQ[m + 2*n
*p + 1, 0] && IntegerQ[p]

Rule 1422

Int[((d_) + (e_.)*(x_)^(n_))/((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_)), x_Symbol] :> With[{q = Rt[b^2 - 4*a*
c, 2]}, Dist[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^n), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), In
t[1/(b/2 + q/2 + c*x^n), x], x]] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && NeQ
[c*d^2 - b*d*e + a*e^2, 0] && (PosQ[b^2 - 4*a*c] ||  !IGtQ[n/2, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b), 2]
]}, Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&
 !GtQ[a/b, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{x^{7/2}}{a+b x^2+c x^4} \, dx &=2 \operatorname{Subst}\left (\int \frac{x^8}{a+b x^4+c x^8} \, dx,x,\sqrt{x}\right )\\ &=\frac{2 \sqrt{x}}{c}-\frac{2 \operatorname{Subst}\left (\int \frac{a+b x^4}{a+b x^4+c x^8} \, dx,x,\sqrt{x}\right )}{c}\\ &=\frac{2 \sqrt{x}}{c}-\frac{\left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{b}{2}-\frac{1}{2} \sqrt{b^2-4 a c}+c x^4} \, dx,x,\sqrt{x}\right )}{c}-\frac{\left (b+\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{b}{2}+\frac{1}{2} \sqrt{b^2-4 a c}+c x^4} \, dx,x,\sqrt{x}\right )}{c}\\ &=\frac{2 \sqrt{x}}{c}+\frac{\left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{-b+\sqrt{b^2-4 a c}}-\sqrt{2} \sqrt{c} x^2} \, dx,x,\sqrt{x}\right )}{c \sqrt{-b+\sqrt{b^2-4 a c}}}+\frac{\left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{-b+\sqrt{b^2-4 a c}}+\sqrt{2} \sqrt{c} x^2} \, dx,x,\sqrt{x}\right )}{c \sqrt{-b+\sqrt{b^2-4 a c}}}+\frac{\left (b+\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{-b-\sqrt{b^2-4 a c}}-\sqrt{2} \sqrt{c} x^2} \, dx,x,\sqrt{x}\right )}{c \sqrt{-b-\sqrt{b^2-4 a c}}}+\frac{\left (b+\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{-b-\sqrt{b^2-4 a c}}+\sqrt{2} \sqrt{c} x^2} \, dx,x,\sqrt{x}\right )}{c \sqrt{-b-\sqrt{b^2-4 a c}}}\\ &=\frac{2 \sqrt{x}}{c}+\frac{\left (b+\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-b-\sqrt{b^2-4 a c}}}\right )}{\sqrt [4]{2} c^{5/4} \left (-b-\sqrt{b^2-4 a c}\right )^{3/4}}+\frac{\left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-b+\sqrt{b^2-4 a c}}}\right )}{\sqrt [4]{2} c^{5/4} \left (-b+\sqrt{b^2-4 a c}\right )^{3/4}}+\frac{\left (b+\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-b-\sqrt{b^2-4 a c}}}\right )}{\sqrt [4]{2} c^{5/4} \left (-b-\sqrt{b^2-4 a c}\right )^{3/4}}+\frac{\left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-b+\sqrt{b^2-4 a c}}}\right )}{\sqrt [4]{2} c^{5/4} \left (-b+\sqrt{b^2-4 a c}\right )^{3/4}}\\ \end{align*}

Mathematica [C]  time = 0.0441358, size = 80, normalized size = 0.21 \[ -\frac{\text{RootSum}\left [\text{$\#$1}^4 b+\text{$\#$1}^8 c+a\& ,\frac{\text{$\#$1}^4 b \log \left (\sqrt{x}-\text{$\#$1}\right )+a \log \left (\sqrt{x}-\text{$\#$1}\right )}{\text{$\#$1}^3 b+2 \text{$\#$1}^7 c}\& \right ]-4 \sqrt{x}}{2 c} \]

Antiderivative was successfully verified.

[In]

Integrate[x^(7/2)/(a + b*x^2 + c*x^4),x]

[Out]

-(-4*Sqrt[x] + RootSum[a + b*#1^4 + c*#1^8 & , (a*Log[Sqrt[x] - #1] + b*Log[Sqrt[x] - #1]*#1^4)/(b*#1^3 + 2*c*
#1^7) & ])/(2*c)

________________________________________________________________________________________

Maple [C]  time = 0.249, size = 64, normalized size = 0.2 \begin{align*} 2\,{\frac{\sqrt{x}}{c}}+{\frac{1}{2\,c}\sum _{{\it \_R}={\it RootOf} \left ({{\it \_Z}}^{8}c+{{\it \_Z}}^{4}b+a \right ) }{\frac{-{{\it \_R}}^{4}b-a}{2\,{{\it \_R}}^{7}c+{{\it \_R}}^{3}b}\ln \left ( \sqrt{x}-{\it \_R} \right ) }} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(7/2)/(c*x^4+b*x^2+a),x)

[Out]

2*x^(1/2)/c+1/2/c*sum((-_R^4*b-a)/(2*_R^7*c+_R^3*b)*ln(x^(1/2)-_R),_R=RootOf(_Z^8*c+_Z^4*b+a))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{\frac{7}{2}}}{c x^{4} + b x^{2} + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(7/2)/(c*x^4+b*x^2+a),x, algorithm="maxima")

[Out]

integrate(x^(7/2)/(c*x^4 + b*x^2 + a), x)

________________________________________________________________________________________

Fricas [B]  time = 7.2757, size = 11297, normalized size = 29.34 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(7/2)/(c*x^4+b*x^2+a),x, algorithm="fricas")

[Out]

-1/2*(4*c*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 - (b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)*sqrt((b^8
 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*
c^13)))/(b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)))*arctan(-1/4*(sqrt(1/2)*(b^11 - 13*a*b^9*c + 63*a^2*b^7*c^2 - 13
8*a^3*b^5*c^3 + 128*a^4*b^3*c^4 - 32*a^5*b*c^5 + (b^10*c^5 - 16*a*b^8*c^6 + 98*a^2*b^6*c^7 - 280*a^3*b^4*c^8 +
 352*a^4*b^2*c^9 - 128*a^5*c^10)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c^10 -
 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))*sqrt(4*(a^2*b^8 - 6*a^3*b^6*c + 11*a^4*b^4*c^2 - 6*a^5*b^2*c
^3 + a^6*c^4)*x + 2*sqrt(1/2)*(b^12 - 12*a*b^10*c + 55*a^2*b^8*c^2 - 120*a^3*b^6*c^3 + 125*a^4*b^4*c^4 - 54*a^
5*b^2*c^5 + 8*a^6*c^6 + (b^11*c^5 - 15*a*b^9*c^6 + 85*a^2*b^7*c^7 - 220*a^3*b^5*c^8 + 240*a^4*b^3*c^9 - 64*a^5
*b*c^10)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*
b^2*c^12 - 64*a^3*c^13)))*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 - (b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)*sqrt((b^
8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3
*c^13)))/(b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)))*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 - (b^4*c^5 - 8*a*b^2*c^6
+ 16*a^2*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b^4*c^11 + 48
*a^2*b^2*c^12 - 64*a^3*c^13)))/(b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)) - 2*sqrt(1/2)*(a*b^15 - 16*a^2*b^13*c + 1
03*a^3*b^11*c^2 - 340*a^4*b^9*c^3 + 605*a^5*b^7*c^4 - 554*a^6*b^5*c^5 + 224*a^7*b^3*c^6 - 32*a^8*b*c^7 + (a*b^
14*c^5 - 19*a^2*b^12*c^6 + 147*a^3*b^10*c^7 - 590*a^4*b^8*c^8 + 1290*a^5*b^6*c^9 - 1464*a^6*b^4*c^10 + 736*a^7
*b^2*c^11 - 128*a^8*c^12)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b
^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))*sqrt(x)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 - (b^4*c^5 - 8*a*b^2*c
^6 + 16*a^2*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b^4*c^11 +
 48*a^2*b^2*c^12 - 64*a^3*c^13)))/(b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)))*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c
 + 5*a^2*b*c^2 - (b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 +
 a^4*c^4)/(b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))/(b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)))/
(a^5*b^8 - 6*a^6*b^6*c + 11*a^7*b^4*c^2 - 6*a^8*b^2*c^3 + a^9*c^4)) - 4*c*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*
c + 5*a^2*b*c^2 + (b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3
+ a^4*c^4)/(b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))/(b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)))
*arctan(1/4*(sqrt(1/2)*(b^11 - 13*a*b^9*c + 63*a^2*b^7*c^2 - 138*a^3*b^5*c^3 + 128*a^4*b^3*c^4 - 32*a^5*b*c^5
- (b^10*c^5 - 16*a*b^8*c^6 + 98*a^2*b^6*c^7 - 280*a^3*b^4*c^8 + 352*a^4*b^2*c^9 - 128*a^5*c^10)*sqrt((b^8 - 6*
a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)
))*sqrt(4*(a^2*b^8 - 6*a^3*b^6*c + 11*a^4*b^4*c^2 - 6*a^5*b^2*c^3 + a^6*c^4)*x + 2*sqrt(1/2)*(b^12 - 12*a*b^10
*c + 55*a^2*b^8*c^2 - 120*a^3*b^6*c^3 + 125*a^4*b^4*c^4 - 54*a^5*b^2*c^5 + 8*a^6*c^6 - (b^11*c^5 - 15*a*b^9*c^
6 + 85*a^2*b^7*c^7 - 220*a^3*b^5*c^8 + 240*a^4*b^3*c^9 - 64*a^5*b*c^10)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2
 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))*sqrt(-(b^5 - 5*a*b^3*
c + 5*a^2*b*c^2 + (b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3
+ a^4*c^4)/(b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))/(b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)))
*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 + (b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)*sqrt((b^8 - 6*a*b^
6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))/(
b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)))*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 + (b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c
^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c
^12 - 64*a^3*c^13)))/(b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)) - 2*sqrt(1/2)*(a*b^15 - 16*a^2*b^13*c + 103*a^3*b^1
1*c^2 - 340*a^4*b^9*c^3 + 605*a^5*b^7*c^4 - 554*a^6*b^5*c^5 + 224*a^7*b^3*c^6 - 32*a^8*b*c^7 - (a*b^14*c^5 - 1
9*a^2*b^12*c^6 + 147*a^3*b^10*c^7 - 590*a^4*b^8*c^8 + 1290*a^5*b^6*c^9 - 1464*a^6*b^4*c^10 + 736*a^7*b^2*c^11
- 128*a^8*c^12)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b^4*c^11 +
48*a^2*b^2*c^12 - 64*a^3*c^13)))*sqrt(x)*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 + (b^4*c^5 - 8*a*
b^2*c^6 + 16*a^2*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b^4*c
^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))/(b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)))*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b
*c^2 + (b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/
(b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))/(b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)))/(a^5*b^8 -
 6*a^6*b^6*c + 11*a^7*b^4*c^2 - 6*a^8*b^2*c^3 + a^9*c^4)) - c*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*
c^2 + (b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(
b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))/(b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)))*log(2*(a*b^
4 - 3*a^2*b^2*c + a^3*c^2)*sqrt(x) + (b^6 - 7*a*b^4*c + 13*a^2*b^2*c^2 - 4*a^3*c^3 - (b^5*c^5 - 8*a*b^3*c^6 +
16*a^2*b*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b^4*c^11 + 48
*a^2*b^2*c^12 - 64*a^3*c^13)))*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 + (b^4*c^5 - 8*a*b^2*c^6 +
16*a^2*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b^4*c^11 + 48*a
^2*b^2*c^12 - 64*a^3*c^13)))/(b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)))) + c*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c
 + 5*a^2*b*c^2 + (b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 +
 a^4*c^4)/(b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))/(b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)))*
log(2*(a*b^4 - 3*a^2*b^2*c + a^3*c^2)*sqrt(x) - (b^6 - 7*a*b^4*c + 13*a^2*b^2*c^2 - 4*a^3*c^3 - (b^5*c^5 - 8*a
*b^3*c^6 + 16*a^2*b*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b^
4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 + (b^4*c^5 - 8*a
*b^2*c^6 + 16*a^2*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b^4*
c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))/(b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)))) - c*sqrt(sqrt(1/2)*sqrt(-(b^5
- 5*a*b^3*c + 5*a^2*b*c^2 - (b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^
3*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))/(b^4*c^5 - 8*a*b^2*c^6 + 16*
a^2*c^7)))*log(2*(a*b^4 - 3*a^2*b^2*c + a^3*c^2)*sqrt(x) + (b^6 - 7*a*b^4*c + 13*a^2*b^2*c^2 - 4*a^3*c^3 + (b^
5*c^5 - 8*a*b^3*c^6 + 16*a^2*b*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c^1
0 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 - (b^
4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c^10
- 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))/(b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)))) + c*sqrt(sqrt(1/2)*
sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 - (b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4
*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))/(b^4*c^5 - 8*a*b^
2*c^6 + 16*a^2*c^7)))*log(2*(a*b^4 - 3*a^2*b^2*c + a^3*c^2)*sqrt(x) - (b^6 - 7*a*b^4*c + 13*a^2*b^2*c^2 - 4*a^
3*c^3 + (b^5*c^5 - 8*a*b^3*c^6 + 16*a^2*b*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^
4)/(b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*
b*c^2 - (b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)
/(b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))/(b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)))) - 4*sqrt
(x))/c

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(7/2)/(c*x**4+b*x**2+a),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{\frac{7}{2}}}{c x^{4} + b x^{2} + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(7/2)/(c*x^4+b*x^2+a),x, algorithm="giac")

[Out]

integrate(x^(7/2)/(c*x^4 + b*x^2 + a), x)